

TIMING

In timing circuits you are controlling the rate of response of the capacitor or controlling the rate of the voltage across the capacitor.

The simplest timing circuit is a series combination of a resistor and capacitor. The time constant is the amount of time to charge the capacitor to 63% of the input voltage and is equal to the resistance times the capacitance (T = RC). By changing the values of the resistance and capacitance, you can have time constants ranging from microseconds to weeks. The important capacitor characteristics are:

- ESR
- Insulation resistance
- Capacitance change vs. time
- Capacitance change vs. temperature

Typical charge and discharge voltage waveforms are shown below.

CHARGING CIRCUIT

V (2) is the voltage across the capacitor after time Tn expressed mathematically

$$V(2) = V(1)(1-e^{Tn/Tc})$$
 $Tc = RC$ time constant
 $R = series$ resistance
 $Tn = CR$ In $V_{(1)}$ $C = capacitance$
 $V(1)-V(2)$ $V(1) = applied$ voltage

In an actual timing circuit, the leakage current must be considered since it will adversely affect the circuit.

3757 W. Touhy Ave., Lincolnwood, IL 60712 • (847) 675-1760 • Fax (847) 673-2850 • www.illcap.com

Actual Charging Circuit

$$Tn = K CR1n \frac{KV}{KV - V(2)}$$

Where
$$K = \underline{Rp}$$
 and $Rp = leakage$ resistance $R+Rp$

DISCHARGE CIRCUITS

During discharge, the voltage across the capacitor after time Tn is

$$V(2) = Ve^{-T/Tc}$$

Tn = CR 1n [V(1)/V(2)]

When the leakage current is factored in the discharge equation becomes:

Tn = K CR ln [KV (1)/V (2)] Where
$$K = \frac{Rp}{R + Rp}$$

It becomes very evident that a capacitor with a high amount of leakage current can cause the time constant of the circuit to get longer than desired.

